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ABSTRACT: Nanoparticle surfaces are passivated by surface-bound ligands, and their 

adsorption on synthesized nanoparticles is complicated because of intricate and low-symmetry 

surface structures. Thus, it is challenging to precisely investigate ligand adsorption on 

synthesized nanoparticles. Here, we applied a machine-learning-accelerated ab-initio 

calculation into experimentally resolved 3D atomic structures of Pt nanoparticles to analyze 

the complex adsorption behavior of polyvinylpyrrolidone (PVP) ligands on synthesized 

nanoparticles. Different angular configurations of the large-sized ligands are thoroughly 

investigated to understand adsorption behaviors onto the various surface-exposed atoms with 

intrinsic low-symmetry. It is revealed that long-range van der Waals interaction (EvdW) shows 

weak negative relationship against generalized coordination number (CN����), in contrast to the 

positive relationship in short-range direct bonding (Ebind), which attenuates the correlation 

between ligand binding energy (Eads) and CN����. In addition, the PVP ligands favor to adsorb at 

which the long-range vdW interaction with surrounding surface structure is maximized. Our 

results highlight the significant contribution of vdW interactions and importance of local 

geometry of surface atoms to adsorption behavior of large-sized ligands on synthesized 

nanoparticle surfaces. 
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TEXT: 

Surface-bound ligands determine structures of colloidal nanoparticles by regulating surface 

energy and growth pathway in the synthesis. In addition, physicochemical properties of 

synthesized nanoparticles are sensitive to the binding type and surface distribution of ligands1-

3. There are different types of ligands used in the synthesis of nanoparticles, including polymers, 

organic molecules, inorganic complexes, and metal ions. Among them, polymers such as 

polyvinylpyrrolidone (PVP) are widely used to direct structures of metal nanoparticles, 

exploiting their preferential adsorption on different crystallographic surfaces4-6. 

Several experimental methods including infrared spectroscopy, nuclear magnetic resonance 

spectroscopy, and x-ray photoelectron spectroscopy are extensively used to investigate the 

ligand-binding chemistry on the nanoparticle surface7-10. However, they are based on 

spectroscopic information from nanoparticle ensemble and have limitation in investigating 

ligand interactions in a single particle level. Theoretical calculations based on quantum 

mechanics are employed to understand the adsorption chemistry of ligands with high 

accuracy10-14, but are not yet readily applicable to the synthesized nanoparticles with complex 

surface structures and large-sized ligand system. Complex surfaces of synthesized 

nanoparticles having low-symmetry surface atoms, edges, and corners require extremely large 

computation resources. In addition, large-sized ligand systems have configurational degree of 

freedom along the different adsorbed direction and complex binding modes including van der 

Waals interaction. 

Recently, several sampling methods based on machine learning have been proposed for fast 

and precise computation of the adsorption energy on the surface of nanoparticles. They are 

successful with small molecular adsorbates such as H, CO and HCHO15-17. The accuracy and 

efficiency demonstrated by artificial neural network (ANN) prediction for small molecules 

encourage us to investigate complex surface interactions of polymer ligands used in the 
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synthesis of nanoparticle by ANN. Here, we studied ligand binding characteristics in a 

synthesized nanoparticle-ligand system, Pt nanoparticles passivated by PVP ligands, using a 

machine-learning-accelerated ab-initio calculation. We applied ANN to the realistic 3D atomic 

structure of synthesized nanoparticles that we directly analyzed from their colloidal phase with 

a precision of 19 pm. This enabled the efficient scanning of binding interactions of a large-

sized ligand on intrinsically disordered surfaces of colloidal nanoparticles without extended 

computation for structure relaxation. As a result, the energy, modes, and orientations of ligand 

bindings were thoroughly investigated for 1334 surface atomic sites of 6 Pt nanoparticles with 

a high precision. The results reveal that the short-range direct bonding and long-range van der 

Waals interaction of PVP are differently affected by the local coordination number of the 

surface-exposed atom and surrounding geometry, contributing to overall binding affinity of 

PVP on surfaces of synthesized Pt nanoparticles. In addition, it is found that the contribution 

from van der Waals interaction is important in the passivation of the nanoparticle surfaces by 

long ligand such as PVP polymers. 

Realistic 3D atomic structures of individual single-crystalline Pt nanoparticles were obtained 

by the Brownian one-particle reconstruction method18,19, revealing that structures of the PVP-

passivated Pt nanoparticles are nonuniformly deviated from the bulk face-centered-cubic 

structure of Pt (Figures 1a,b). Surface structures of the synthesized Pt nanoparticles are 

complicated due to the irregular shapes of islands, resulting in diverse distribution of 

generalized coordination number (CN����) that indicates distinct local geometry of a surface atom 

(Figure 1a). It implies that ligands could strongly interact with surface atoms and that the way 

they passivate the surface is complicated. In addition, the various surface structures cover much 

broader training space for ANN compared to model nanoparticles, which improves the 

accuracy of prediction for ligand adsorption behavior on Pt nanoparticles (Figure S1). From 

3D atomic structures, surface atoms were defined as ones that have coordination number (CN) 
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≤ 9 and meet surface vector criteria (Figure S2 and see Methods in Supporting Information). 

The Pt cluster clipped with a cutoff of 10 Å well represents the adsorption behavior of PVP on 

the Pt surface as shown in the benchmark calculation (Figure S3). It was modeled that a PVP 

monomer consists of a pyrrolidone ring, and an ethane group could bind to the top of Pt binding 

sites. The density functional theory (DFT) was corrected with DFT-D3 method to analyze 

complex PVP adsorption behavior composed of short-range direct bonding energy (Ebind) and 

long-range van der Waals interaction energy (EvdW) (Figure 1c). The degree of freedom from 

the azimuthal binding angle was considered. Training data for ANN was constructed by 

extensive DFT calculations for PVP adsorption. Configurations of 1,386 representing 231 

surface atoms of Pt nanoparticle 1 in Figure 1 including azimuth-rotated PVP orientations with 

60-degree intervals for each site were initially screened. Among them, 452 configurations 

where PVP could not access were removed from data. In addition, 32 configurations were also 

excluded, which showed direct bonding by nitrogen atom of PVP. This binding mode is often 

observed for larger nanoparticles (~8.4 nm) while it is negligible for smaller nanoparticles 

(~6.4 nm and smaller) where carbonyl binding mode is dominant10. Thus, oxygen-binding 

mode of 902 configurations was eventually utilized for the training process. 

The symmetry function was used for the input feature to predict the adsorption energy of 

PVP on the Pt adsorption center as shown in Figure 1d20. To handle the degree of freedom of 

azimuthally θ-rotated PVP, a characteristic point that represents local geometry information 

from PVP orientation was assigned. The characteristic vector was defined as the projection of 

Pt adsorption center to the nitrogen atom (Pt-N vector in Figure 1d) on the surface of Pt cluster 

(see Methods). The characteristic point was defined as the point 2.0 Å away from the adsorption 

center in the direction of the characteristic vector. The distance between the adsorption center 

and the characteristic point was determined by a 5-fold cross-validation (Supplementary Table 
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1). We calculated 40 symmetry functions from the adsorption center and characteristic point 

(12 for the radial part and 28 for the angular part) and concatenated them to make an input 

feature with 80 dimensions. The produced input feature was used by a two-layered fully 

connected neural network with 4412 hidden parameters to predict the EvdW and Ebind separately. 

By using ANN, the angular adsorption energy profile of PVP on the various Pt nanoparticle 

surface structures can be deduced as shown in Figure 1e. Since ligands can dynamically interact 

with the metal nanoparticle surface by adsorption and desorption processes9, the θ-averaged 

adsorption energy is used to represent the binding affinity of PVP to Pt adsorption centers. 

The dataset with a total of 902 configurations was split into 722 data for the training set, 90 

data for the validation set, and 90 data for the test set with the same coordination group ratio 

as the original dataset. We kept track of validation data for adjusting the learning rate with the 

learning rate scheduler to prevent overfitting. The evolution of training and validation error 

during the training epoch is shown in Figure S4. Training was early stopped at epoch 716, with 

0.2169 eV root mean square error (RMSE) for the training set and 0.2250 eV RMSE for the 

validation set. Figures 2a,b shows the prediction result for the test set with 0.0519 eV and 

0.0708 eV RMSE for EvdW and Ebind, an error level comparable to those of a previous work for 

the adsorption of simple adsorbates (CO and HOCO)16. 

The surface atoms of each synthesized Pt nanoparticle 1 to 6 are displayed with a color 

gradient according to θ-averaged Ebind, EvdW and Eads assigned for each surface atom, 

respectively (Figures 2c,d, and Figure S5). For the Ebind and Eads maps, adsorption centers on 

terrace show low binding energy, while others on edges and kinks show high binding energy. 

This result is consistent with previous results obtained from an ideal Pt surface10. However, 

EvdW maps show higher binding energies on edges and kink compared to atoms on terrace. In 

addition, the distributions of averaged Ebind for each nanoparticle are different to those of 

averaged EvdW (Figures S6 and S7). As shown in histograms of the averaged Ebind and EvdW for 
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each nanoparticle, the energy distributions of Ebind are close to bimodal shape, while those of 

EvdW are close to unimodal distribution. We calculated bimodality index (BI) for the energy 

distributions, representing the level of bimodal distribution, which shows that the distributions 

of Ebind have higher BI than those of EvdW for all Pt nanoparticles (Figure S8 and see Methods 

in Supporting Information). These findings indicate that the two types of ligand binding modes 

are differently affected by Pt surface structures. 

CN and generalized CN (CN����) are descriptors associated with chemical activities of surface 

atoms. It is known that CN and CN���� show strong linear relationship with adsorption energies 

of simple adsorbates such as O, O2, OOH, and OCH3 on high-symmetry metal nanoparticles21-

25. However, unlike the simple adsorbates, the correlation between ANN-predicted averaged 

PVP adsorption energy (Eads) and CN����  of an adsorption center shows weak positive 

relationship of linear correlation with Pearson correlation coefficient (r) of ~0.656 (Figure 3a). 

As following the different trends of energy distributions in Figures 2c and 2d, averaged Ebind 

and EvdW show different correlation with CN���� (Figures 3b,c). The correlation between Ebind and 

CN���� is highly linear with positive trend because direct bonding of PVP by the O atom of 

carbonyl group is predominantly governed by the degree of dangling bonds of the adsorbed Pt 

surface atom26. On the other hand, EvdW shows weak negative relationship against CN����. Since 

the long-range interactions with surrounding Pt surfaces are also involved in the pyrrolidone 

ring and ethane group, EvdW does not have noticeable relationship to the CN���� which is relevant 

to the coordination environment of an adsorption center. These different correlations with CN���� 

indicate that the weak positive relationship between the binding energy and CN���� is attributed 

to the van der Waals interactions of the large-sized ligands and the long-range interaction 

significantly contributes to the adsorption between large-sized ligands and complex surfaces 

of nanoparticles. Note that the Pearson correlation coefficient of Ebind to CN���� is still lower than 
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the one from ideal structures studied in previous reports because of the low-symmetry structure 

of synthesized Pt nanoparticles22. 

The negative relationship of EvdW to the CN���� indicates that the pyrrolidone ring and ethane 

group strongly interact with the surrounding Pt surfaces when PVP binds to the Pt adsorption 

center with high CN����, such as terrace and step, whereas weakly interact when adsorption centers 

have low CN����  values, such as edge and corner. Since the long-range interaction is 

predominantly governed by the degree of contact between the PVP ligand and Pt surface, 

energy profiles along the different angular configuration of the PVP show that the energy 

deviation of EvdW is larger than that of Ebind (Figure S9). Thus, the configuration of adsorbed 

PVP on the Pt surfaces with the lowest value of EvdW, meaning the most stable van der Waals 

interaction, is required to investigate the relationship of EvdW to CN���� . For the adsorption 

directions with the lowest EvdW, the characteristic vectors (the projection of the Pt-N vector on 

Pt surface, Figure 1c) are visualized as yellow arrows on the 3D atomic maps of Pt 

nanoparticles (Figures 4a,c, and e). 

The adsorption directions on the Pt nanoparticle surfaces with the lowest EvdW have following 

tendency. First, when the PVP ligands are directly bind to the terrace atoms of islands, they are 

more likely to direct toward the near terrace atoms (Figures 4a,b, and Figure S10). Second, the 

PVP ligands binding on the edge and corner atoms favor to locate toward the steps nearby 

(Figures 4c,d, and Figure S11). Third, PVP ligands binding on the adsorption centers under the 

islands tend to adsorb toward the steps nearby (Figures 4e,f, and Figure S12). These results 

indicate that a way to maximize the degree of contact of PVP ligands depends on the type of 

adsorption centers, which leads to the weak negative relationship between EvdW and CN����. In 

addition, comparing the adsorption direction of each PVP ligand with the lowest Ebind and EvdW 

to the adsorption direction with the lowest Eads, the configurational similarity with the lowest 

EvdW is higher than that of the lowest Ebind (Figure S13). It indicates that the PVP ligands favor 
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to adsorb at which the long-range vdW interaction with surrounding surface structure is 

maximized. In other words, surrounding surface geometry of an adsorption center is important 

in determining the most stable configuration of binding PVP ligands on low-symmetry surface 

structure of Pt nanoparticles. 

PVP adsorption behavior on several adsorption centers with the same CN and similar CN���� 

was carefully examined to represent the influence of surrounding surface geometry to the 

adsorption energy. Two adsorption centers for each particle with the same CN are colored in 

blue and orange (Figures 5a,b). Although each pair shows similar CN���� values, the averaged 

adsorption energy of each adsorption center differs more than 0.1 eV (Figure 5b). It is because 

the local surface geometry surrounding the adsorption center is different as shown in the top 

view and side view (Figures 5a,b). In detail, the local surface geometry around the higher 

binding energy site shows a flat surface, while the lower binding energy site is surrounded by 

kinks and edges. It implies that the flat pyrrolidone ring of PVP favors neighboring flat surfaces 

with high van der Waals interaction. The binding energy for the sites even with the same CN���� 

also shows difference in its angular profile (Figure 5c). The large difference of adsorption 

energies at the specific configurational angle is also shown in the results of the DFT calculation  

(Table S2). The results demonstrate that the adsorption energy of PVP ligands is significantly 

affected by each surrounding geometry. 

In summary, we calculated the adsorption energy of PVP ligand on synthesized Pt 

nanoparticles and analyzed its adsorption behavior through machine-learning-accelerated ab-

initio calculation. Using experimentally resolved atomic structures of nanoparticles provides 

sufficiently diverse sampling data for learning adsorption tendency on realistic nanoparticle 

surfaces and enables accurate prediction for surface chemistry. Our results reveal that the van 

der Waals interactions of the PVP with Pt surfaces induce weak positive relationship between 

adsorption energy and CN����, which indicates the significance of surrounding surface structures 
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of adsorption centers when adsorbed with large-sized ligands. The introduced method utilizing 

machine-learning-accelerated ab-initio calculation and experimentally analyzed surface atomic 

structures suggests a new low-cost and high-precision computational approach for studying 

surface chemistry and catalytic activity of nanoparticles. 
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Figure 1. Scheme for machine-learning-accelerated ab-initio calculation. (a) Representative 

3D structure of synthesized and model nanoparticles shown in left and right side, respectively. 

Histograms for the CN���� of surfaces atoms on the both nanoparticles are presented in the middle 

panel. The histograms of synthesized and model nanoparticles are shown in top and bottom, 

respectively. (b) The surface structure of PVP ligand protected Pt nanoparticle is clipped 

around 10 Å. (c) DFT-D3 calculated ligand binding energy (Eads) is used for training set. (d) 
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Local geometric information is extracted as a set of symmetry functions from the adsorption 

site (green atom, Gi
N) and characteristic point (blue point, Gi

C) where the orientation of PVP 

monomer, θ, is reflected. Each of the two hidden layers of the fully connected neural network 

consists of 30 nodes and 60 nodes, respectively. (e) The angular adsorption energy profiles of 

PVP ligand on the different types of surface structures of particle 1 can be predicted by ANN. 

Red, blue and black lines indicate Ebind, EvdW and Eads, respectively. 
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Figure 2. (a, b) Artificial neural network prediction result of the test set for (a) Ebind with 0.0708 

eV root mean square error and (b) EvdW with 0.0519 eV root mean square error. (c, d) 3D atomic 

structures of six synthesized Pt nanoparticles colored by (c) θ-averaged Ebind and (d) θ-averaged 

EvdW of PVP ligand. Each Pt nanoparticle has a diameter of 2.25, 2.41, 2.42, 2.52, 2.66, and 

2.92 nm, respectively. Scale bar, 1 nm. 
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Figure 3. (a) Correlation between CN����  of adsorption centers and θ-averaged adsorption 

energies predicted by ANN. (b) Correlation between CN���� of adsorption centers and energy 

contribution of direct bonding. (c) Correlation between CN���� of adsorption centers and energy 

contribution of van der Waals interaction. 
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Figure 4. (a, c, e) 3D maps of averaged adsorption energy with yellow arrows indicating 

characteristic vectors of adsorbed PVP ligands with the lowest EvdW. The PVP ligands are 

absorbed onto (a) particle 1, (c) particle 5, and (e) particle 4. The arrows come from (a) terraces, 

(c) edges, corners, and (e) under the islands. (b, d, f) Examples for optimal configurations of 

PVP ligands absorbed on different surface structures of particle 1, displaying (left) top-view 

and (right) side-view. The PVP ligands are absorbed on (b) a terrace, (d) an edge, and (f) an 

under the islands. 
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Figure 5. (a) Top view of exemplary adsorption sites with similar CN���� but different adsorption 

energy. Constituent atoms included in the 10 Å cluster for ANN prediction are colored by depth. 

The coordination numbers of the adsorption centers and the nearest neighbors of them are 

indicated. (b) Side view of exemplary adsorption centers. The auxiliary lines are guide for 

comparing the local geometry of each adsorption site. The θ-averaged adsorption energies of 

each adsorption center are presented. (c) Angular adsorption energy profiles on each adsorption 

center. 
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